
Eur. Phys. J. B 33, 365–372 (2003)
DOI: 10.1140/epjb/e2003-00177-4 THE EUROPEAN

PHYSICAL JOURNAL B

AC Stark effect in toroidal carbon nanotubes threaded
with an ac magnetic flux

Hong-Kang Zhaoa

CCAST (World Lab.), PO Box 8730, Beijing 100080, PR China
and
Department of Physics, Beijing Institute of Technology, Beijing 100081, PR China

Received 20 November 2002 / Received in final form 7 February 2003
Published online 20 June 2003 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2003

Abstract. The ac Stark effect is investigated in the toroidal carbon nanotube system threaded with an
ac magnetic flux. The Floquet theory is employed to deal with the time-dependent quantum problems.
The time-averaged energy of the system is derived and is found to exhibit a strong relationship with
an external field, and the modified energy gap has been presented. The ac flux enhances energy gaps to
cause metal-semiconductor transition. The steady current has been obtained by employing the free energy
approach, and the persistent current is a special case as the magnitude of the ac flux approaches zero. The
photon-assisted current is quite different from the persistent current due to the absorption and emission of
photons. The local density of states is obtained by calculating the Green’s function in the Floquet state,
and photon-resonant structures are observed. All of the novel features are associated with the ac Stark
effect, which is caused by the modification of energy levels.

PACS. 73.63.Fg Nanotubes – 73.61.Wp Fullerenes and related materials – 73.22.-f Electronic structure
of nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals

1 Introduction

An important situation is that an electron is bound in
an atom and placed in a weak uniform external electric
field E. The field can be derived from an electrostatic
potential φ(r) = −E.r, where the coordinate origin is
most conveniently chosen at the position of the nucleus.
In this system, the shift of the energy level in an elec-
tric field is known as the Stark effect [1]. For a homoge-
neous electric field applied to a periodic potential crys-
tal system, the Bloch functions are modified as there is
no interband coupling, and an electron in the crystal will
move within one band with its wave vector k varying with
time. Therefore, this leads to Wannier-Stark quantized en-
ergy levels ε + nαF (n = 0,±1,±2, ...) deviating from
the original one ε, where α is the lattice constant, and F
is the magnitude of force on the electron due to the ex-
ternal field [2]. This level shifting was demonstrated ex-
perimently by Koss and Lambert through observing the
optical absorption of GaAs in a strong electric field [3].
When a magnetic field is applied to a large cylindrical
molecule, such as a nanotube, field-induced level crossing
takes place, and a linear Stark effect occurs, or the dif-
ference in quadratic Stark coefficient of two levels leads
to a discontinuity in the polarization [4]. At sufficiently
high external electromagnetic fields, such as in strong laser
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beams, the spectral structure of a small system can be
modified drastically. The ac Stark effect plays an impor-
tant role in causing multiphoton resonances. The observa-
tion of resonances in the photon-electron spectrum from
the multiphoton ionization of xenon confirmed the fact.
The investigation of ac Stark effects can help us under-
stand the ionization dynamics [5–7]. The ac stark effect
can shift initially nonresonant minibands in semiconduc-
tor superlattices into multiphoton resonance [8], and the
photon-assisted mesoscopic tunneling is also associated
with this effect [9,10].

Recently, many techniques have been developed to fab-
ricate different structures of carbon nanotube (CN).The
single-wall carbon nanotubes (SWCNs) are constructed
by rolling up the graphite sheet in cylindrical form. The
graphite sheet is composed of carbon with two inequiva-
lent atoms forming an oriented honeycomb lattice. Each
A atom is surrounded by three B atoms. Because of the
variety geometrical and internal electron structures, CNs
are found to have very unique transport and electronic fea-
tures, such as the two facets of metallic and semiconduct-
ing behavior depending on their geometric aspects [11].
Since the experimental realization of a CN was performed
by Iijima [12] in 1991, this field has attracted much at-
tention both experimentally and theoretically. It opens
up a new artificial laboratory to study one-dimensional
transport [13–17] which is extensively investigated in
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semiconductor quantum wire and hybrid device struc-
tures. The toroidal carbon nanotube (TCN) is a form of
carbon structure, which is a torus structure by bending
the carbon tube such that the two edges are connected.
The tori proposed are constructed by introducing a single
pentagon-heptagon pair into the perfect hexagon bonding
pattern to connect carbon tubules [18]. In reference [19],
the construction was based on the C60, and the local topo-
logical structures of positive and negative Gaussian curva-
ture were obtained theoretically. Haddon provided a the-
oretical investigation of the electron properties of TCN
C576, and revealed the quantum nature of a quasi-one-
dimensional ring [20]. Martel et al. have fabricated rings
from SWCNs, and they have observed magnetoresistance
at low temperature [21]. The persistent current in TCNs
was investigated and found to exhibit novel properties due
to the modification of the energy structure and energy gap
of the TCN by applying a magnetic field [22].

TCNs can be employed as functional electronic de-
vices, such as switching and interference devices. The con-
ductance of such a device can be controlled by adjusting
the magnetic flux through the TCN since its energy gap
is strongly associated with the magnetic flux. Usually, an
electronic device is applied with an electromagnetic field,
especially the radio frequency field. Therefore, it is inter-
esting to consider the electronic properties induced by the
electromagnetic field. The ac Stark effect plays a major
role in such systems because the energy spectra are modi-
fied by the ac field. Correspondingly, the energy gaps and
transport behavior are quite different from the dc field ap-
plied systems. In this paper, we investigate the physical
properties of a TCN threaded with an ac magnetic flux.
We suppose that electrons in the TCN are affected by the
homogeneous vector potential. We use the Floquet theory
to deal with the time-dependent quantum problems by
casting the wave function into the extended Hilbert space.
The time-averaged energy of the system has been derived,
and the modified energy gap has been presented to com-
pare with the one when the system is threaded with a dc
flux. As the system is applied with a magnetic flux, the
electrons in the TCN are driven by the field to form a cur-
rent. This kind of current is caused by the interference be-
havior of electrons in the ring. We calculate the steady cur-
rent of the system by employing the free energy approach,
since the system can be taken as the pseudo-equilibrium
state in the sense of quantum statistical mechanics. The
persistent current is a special result as the magnitude of
ac flux approaches zero. The multi-photon assisted cur-
rent is quite different from the persistent current, since
the absorption and emission of photons cause novel con-
ducting behavior. The local density of states (LDOS) is
obtained by calculating the Green’s function of the sys-
tem in the Floquet state, and photon-resonant structures
are observed. In Section 2 we introduce our system and
the Floquet theory briefly. The total energy and energy
gap of the system are derived. Section 3 is devoted to
the calculation of the steady state current from a statisti-
cal mechanics method. The multi-photon assisted steady
current and persistent current are displayed there. We ar-

range the LDOS in Section 4, where the definition of the
Green’s function and the numerical results are given. The
conclusion and summary are given in Section 5.

2 System formalism and energy levels

A TCN is formed by rolling a finite graphite sheet from the
origin to the vectors Rx = m1a1+m2a2, and Ry = p1a1+
p2a2 simultaneously. This indicates that the TCN satis-
fies the periodic boundary conditions along both of the
longitudinal and transverse directions. In the (ex, ey, ez)
coordinates, the two-dimensional graphite sheet can be
represented as a hexagonal lattice where the primitive
lattice vectors of the graphite a1 and a2 are defined as
a1 = (31/2a/2,−a/2, 0) and a2 = (31/2a/2, a/2, 0). The
two primitive lattice vectors possess the same magnitude
as a =| a1 |=| a2 |= b × 31/2, where b = 1.44 Å is the
C-C bond length of CNs known to be slightly larger than
that of graphite [11]. We denote the TCNs by the con-
vention (m1, m2; p1, p2) [22,23]. In this paper, we focus on
the highly symmetric armchair (m, m;−p, p) TCN with
an armchair structure along the transverse direction ex,
and a zigzag structure along the longitudinal direction
ey. In the rotating coordinate system with the base vec-
tors (er, eθ, ez), the axis of the TCN is parallel to ez. A
time-dependent magnetic flux φ̃(t) = φ + φ1 sin(ωt) is
threaded through the TCN, where φ is a time-independent
magnetic flux, φ1 is the magnitude of the ac flux com-
ponent, and ω is the angular frequency. Here we sup-
pose that the ac flux is induced by the specially ho-
mogeneous electromagnetic vector potential A(t) in the
eθ direction, i.e., A(t) = (Ar, Aθ, Az) = (0, Aθ, 0), with
Aθ = A0 + Aω sin(ωt). For this vector potential we can
find the magnetic field associated with the radial distri-
bution as B = Aθ(t)ez/r by B = � × A(t), where r
is the distance of the field point from the z-axis. The
electrical field is given by E = −∂A(t)/∂t, which has
the form of E = −Aωω cos(ωt)eθ. The vector poten-
tial produces the ac magnetic flux φ̃(t) =

∮
A(t) · dw,

where w is the integral contour vector along the meso-
scopic ring in the direction eθ. We obtain the ac mag-
netic flux φ̃(t) with the dc magnetic flux magnitude φ =
πDtA0, and ac flux magnitude φ1 = πDtAω, where Dt

is the diameter of the mesoscopic ring. This is a time-
dependent periodic system with the period T = 2π/ω,
and it can be described by the time-dependent Hamilto-
nian H(t) = H(t + T ). By introducing the Floquet func-
tions uk(r, t) = ϕk(r)exp{− i

�

∫ t

0
[E[q(τ)] − ε(k)]dτ}, the

time-dependent Schrödinger equation can be cast in the
pseudo-equilibrium eigenvalue equation [8,24,25]

L̂(t)uk(r, t) = ε(k)uk(r, t), (1)

where L̂(t) = H(t) − i� ∂
∂t , and ε(k) is the energy of the

Floquet state uk(r, t) given by

ε(k) =
1
T

∫ T

0

dτE[q(τ)], (2)
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with q(t) = k − eA(t)/�. E(k) is the energy level with
the eigenfunction ϕk(r) of the system in the absence
of an external magnetic field A(t). Due to the gauge
transformation, the time-dependent energy is given by
replacing k by q(t). The periodic boundary conditions
lead to the situation that the Brillouin-zone edge oscil-
lates with time [26]. In the Floquet theory, the Hilbert
space has to be extended by defining the extended states
Ψk,n(t) = uk(r, t)exp(inωt) as the base of the Hilbert
space. In this situation, the energy possesses side-bands
associated with the absorption and emission of n photons
as Ẽn(k) = ε(k) + n�ω, (n = 0,±1,±2, ...). This means
that L̂(t)Ψk,n(t) = Ẽn(k)Ψk,n(t), which defines the multi-
ple photon-assisted pseudo-equilibrium state. The wave-
function of the system is a linear combination of the
extended Floquet state Ψ(r, t) =

∑
nk CkJn(α1)Ψk,n(t),

where Ck is the annihilation operator of the electron,
Jn(α) are the Bessel functions of the first kind.

The diameter dt of tube is determined by dt = 3bm/π,
while the diameter of the ring is determined by Dt =
31/2bp/π. The ratio of the two diameters κ = dt/Dt =
31/2m/p. The electron energy structure and transport
property of this TCN system are mainly determined by
the π valence electrons. Tight-binding calculations for the
π electrons are proved to be in good agreement with ex-
periment. They can provide important insights for under-
standing the electron structure of the π energy level in
the CNs system. In the absence of an external electro-
magnetic field, the energy dispersion is degenerate at the
K point in the Brillouin zone [11]. However, as the ex-
ternal electromagnetic field is applied to the system, the
energy spectrum is modified considerably by the dc and
ac components of the applied field. The periodic bound-
ary condition of a TCN requires that q(t) must satisfy the
relation qx = 2πj/3bm, and qy = 2π[� + φ̃(t)/φ0]/31/2bp,
where φ0 = h/e is the flux quantum, (j = 1, 2, ..., m; � =
1, 2, ..., 2p). The energy of this TCN system is quantized in
the longitudinal and transversal directions, and the energy
also shifts to exhibit an ac Stark effect, i.e., the discrete en-
ergy Ẽ�j,nδ(φ, φ1) = ε�j,δ(φ, φ1)+n�ω, (n = 0,±1,±2, ...).
This signifies that each π and π∗ energy level is shifted due
to the valence electrons absorbing and emitting photons.
In this paper, we treat the TCN with the ratio of two di-
ameters κ � 1, which signifies that the inner structure of
the nanotubes does not enter our treatment. Furthermore,
we make an approximation by neglecting the coupling be-
tween different bands, and only consider the photon ab-
sorption and emission procedures. The tight-binding cal-
culation reveals that this armchair TCN energy is given by

ε�j,δ(φ, φ1) =

δγ0

{
1 + 4

∞∑
n=−∞

[J2
2n(α1) cos2(β�) + J2

2n+1(α1) sin2(β�)]

+ 4J0(α1) cos(β�) cos
(

jπ

m

) }1/2

, (3)

where β� = π(� + φ/φ0)/p, α1 = πφ1/pφ0, j =
1, 2, ..., m; � = 1, 2, ..., 2p; δ = ±, and γ0 = 3.033 eV. The
upper half of the energy dispersion curves describes
the π∗-energy anti-bonding band (unoccupied state), and
the lower half of it is the π-energy bonding band (occupied
state). Defining Ω = φ0/31/2πb = 5.3 × 10−4 Tm, the di-
mensionless quantity α1 can be expressed as α1 = Aω/Ω.
The energy is a periodic function of φ with period φ0,
and its magnitude relies on the magnitude of the ac field.
By varying Aω continuously, the energy varies accordingly
and passes through the zeros of Jn(α), and some novel
behavior will be observed. From the energy of the TCN,
we find that the ac Stark effect not only shifts the elec-
tron level by n�ω, but it also modifies the magnitude of
the original electron energy levels. Since the Bessel func-
tions Jn(α) possess the property at α = 0, J0(0) = 1,
and Jn(0) = 0 for n �= 0, the energy given above re-
duces to the energy dispersion of an armchair TCN as
Aω → 0 [22]. Due to the modification of the energy disper-
sion, the metallic TCN changes to a semiconductor accord-
ing to the modification of the energy gap. On the other
hand, even if the system is semiconducting, the valence
electrons can become conducting electrons by absorbing
enough photon energy, and the conducting electrons be-
come valence electrons by emitting enough photons. This
effect can be employed to contrive photon-electron TCN
devices.

The straight armchair CN with the indices (m, m) is
always metallic in the absence of an external field. But
for the metallic armchair (m, m;−p, p) TCN, it requires
that p be a multiple of 3 which is referred to as a type I
TCN), i.e., p = 3ν, where ν is an integer. The highest
occupied state and the lowest unoccupied state meet with
each other at the Fermi energy EF in the absence of an
external magnetic field. Due to the symmetric structure,
the Fermi energy is located at EF = 0. The semicon-
ductor armchair TCN in the absence of an external field
requires the index p satisfy the relation p = 3ν ± 1 (which
is referred to as a type II TCN). The energy gap is deter-
mined by the electron state as j = m, and � = ν, ν − 1.
However, as the external electromagnetic field is applied
to the TCN, the energy gap changes, and it is intimately
related to the magnitude of the field. The energy gap of
the armchair TCN in the presence of an electromagnetic
field is modified now being associated with the form

E(∓)
g (φ, φ1) = 2γ0

{
3 −

[
1 − 2

∞∑
n=−∞

J2
2n+1(α1)

]
z(±)(2ξ)

− 2J0(α1)z(∓)(ξ)

}1/2

, (4)

where z(±)(ξ) = cos(ξ) ± 31/2 sin(ξ). The side-band en-
ergy shift is not included in the energy gap formula above,
which we will discuss later. The energy gap formula is dif-
ferent for different types of CN and magnetic flux regions.
For the type I armchair TCN, the energy gap Eg(φ, φ1) is
determined by Eg(φ, φ1) = E

(+)
g (φ, φ1), with ξ = χ0φ/φ0

in the region 0 ≤ φ ≤ φ0/2, which is related to the
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energy state j = m, � = ν. R is the radius of ring, and
χ0 = 31/2b/2R. In the region φ0/2 ≤ φ ≤ φ0, it is deter-
mined by Eg(φ, φ1) = E

(−)
g (φ, φ1), with ξ = χ0(1− φ/φ0)

associated with the state j = m, � = ν − 1. For the
type II armchair TCN, the energy gap is determined by
Eg(φ, φ1) = E

(−)
g (φ, φ1) with ξ = χ0(1/3−φ/φ0) in the re-

gion 0 ≤ φ ≤ φ0/2, which is associated with the state j =
m, � = ν. In the region φ0/2 ≤ φ ≤ φ0, it is determined by
Eg(φ, φ1) = E

(−)
g (φ, φ1),with ξ = χ0(2/3−φ/φ0), which is

associated with the state j = m, � = ν − 1. For the type I
TCN as φ = 0, φ0, and for the type II TCN as φ = φ0/3,
2φ0/3, respectively, the energy gap shown in equation (4)
is reduced to

Eg(φ1) = 2 × 21/2γ0

[
1 − J0(α1) +

∞∑
n=−∞

J2
2n+1(α1)

]1/2

.

(5)
Obviously, as α1 → 0, the energy gaps disappear at these
points. The TCNs can exhibit metallic behavior even if
they are semiconducting TCNs in the absence of an ex-
ternal field. The ac flux modifies these zero energy gaps
to nonzero ones. This signifies that the dc flux modifies
the conducting properties of TCNs from semiconductor
to metal transition at these points, while the ac flux in-
creases the energy gaps to form semiconducting TCNs
with large gaps. The energy gaps increase tremendously
with increasing magnitude α1. In the absence of an ex-
ternal ac field, i.e., α1 = 0, equation (4) is reduced to
E

(±)
g (φ) = 2γ0 | 1 − z(±)(ξ) |, with ξ given above in

different regions of φ. If the radius R is very large such
that χ0 � 1, the energy gap is then given by the one
shown in reference [22]. For a type I armchair TCN,
Eg(φ) = ∆0φ/φ0 as 0 ≤ φ ≤ φ0/2; Eg(φ) = ∆0(1− φ/φ0)
as φ0/2 ≤ φ ≤ φ0, where ∆0 = 3bγ0/R. For a type II
armchair TCN, Eg = ∆0 | 1/3 − φ/φ0 | in the region
0 ≤ φ ≤ φ0/2; Eg(φ) = ∆0 | 2/3 − φ/φ0 | in the region
φ0/2 ≤ φ ≤ φ0.

We have examined that there is no major differ-
ence in the physical properties for the rings: (1) type I
(10, 10;−5001, 5001) and (10, 10;−480, 480) TCNs; (2)
type II (10, 10;−5002, 5002) and (10, 10;−481, 481)
TCNs. This signifies that our results discussed so far pos-
sess a common feature of the system if the ring is large
enough. To illustrate the corresponding behavior of the
energy structure and pseudo-equilibrium properties, we
perform the investigation of two samples: (a) the type I
(10, 10;−480, 480)TCN ;(b) the type II (10, 10;−481, 481)
TCN. For these TCNs, the index p satisfies p = 3ν, and
p = 3ν +1 with ν = 160. For the type I (10, 10;−480, 480)
TCN, the diameter of the tube dt = 13.75 Å, and the di-
ameter of the ring Dt = 381.10 Å. The ratio of the two
diameters is κ ≈ 0.036. For the type II (10, 10;−481, 481)
TCN, the diameter dt is the same as the former one,
but the diameter Dt = 381.89 Å. The diameter ra-
tio is κ ≈ 0.036. Figure 1 shows the energy levels of
(10, 10;−480, 480) TCN in the presence of the ac flux at
φ = 0. The upper half energy levels exhibit the π∗-energy
anti-bonding band variation with the magnitude of the

Fig. 1. The energy levels of the (10, 10;−480, 480) TCN versus
α1 for the case when the dc magnetic flux φ = 0. The energy
shift by absorbing and emitting photons is not displayed.

ac flux, while the lower half energy levels represent the
π-energy bonding band displaying the symmetric modifi-
cation compared with the upper one. At α1 = 0, the low-
est π∗-energy anti-bonding level and the highest π-energy
bonding level meet each other. This signifies that the en-
ergy gap is zero at this point. As α1 increases, the two
energy bands separate to form a large energy gap, and it
does not disappear for α1 �= 0. Each of the two energy
levels bends up and down, and then the energy levels knit
together by increasing the magnitude of the ac flux. The
knitting points of the energy bands are associated with
the zeros of the Bessel functions. The modification of the
energy bands due to an ac flux is a kind of ac Stark ef-
fect. Since an ac Stark effect in this system increases the
energy gap to change the metallic armchair TCN into a
semiconducting one, the behavior of electrons in this sys-
tem is quite different from the one without applying the
ac flux. One observes that the energy gap is very large if
the ac flux is strong enough. The first knitting point is
located at α1 = 2.2 which is related to the magnitude of
the ac magnetic field B1 = 6.12 × 104 T on the ring by
B1 = Aω/R.

We present the energy gap with respect to the mag-
netic flux φ in Figure 2. Diagrams (a) and (b) cor-
respond to the situations in the absence (α1 = 0),
and in the presence (α1 �= 0) of an ac magnetic flux
component, respectively. In diagram (a), the solid and
dotted curves are associated with the energy gaps of
(10, 10;−480, 480) and (10, 10;−481, 481) TCNs. As the
dc flux is zero, the (10, 10;−480, 480) TCN is metal-
lic, while the (10, 10;−481, 481) TCN is semiconducting
with a small energy gap. The energy gaps change peri-
odically by increasing the flux φ. This means that the
TCNs show metallic and semiconducting properties peri-
odically with φ. The metal-semiconductor transition in-
duced by the magnetic flux was predicted in a straight
infinite CN [27], and in large TCNs [22], where the tran-
sitions occur periodically at points. This means that at
some points of φ the TCN behaves like a metal, while at
other points the TCN behaves like a semiconductor. For
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Fig. 2. The energy gap Eg of the TCN versus dc magnetic
flux φ. Diagram (a) shows the case for α1 = 0. The solid curve
is associated with the (10, 10;−480, 480) TCN, while the dot-
ted curve is related to the (10, 10;−481, 481) TCN. Diagram
(b) shows the case for α1 = 0.02. The solid curve is associ-
ated with the (10, 10;−480, 480) TCN, while the dotted curve
is related to the (10, 10;−481, 481) TCN.

a type I TCN, the metal-semiconductor transition points
in a period are located at φ = 0, φ = φ0, while for the
type II TCN, the metal-semiconductor transition points
in a period are located at φ = φ0/3, 2φ0/3. The magni-
tudes of the dc magnetic field on the ring corresponding
to the above transition points are B0 = 0, 1.814 T, for the
type I TCN, and for the type II TCN B0 = 0.605, 1.209 T,
respectively. This behavior is modified by applying the
ac flux to the TCNs shown in diagram (b). First, there
is no metallic property in the systems at α1 = 0.02.
The corresponding ac magnetic amplitude on the ring is
B1 = 5.56× 102 T. The TCNs are always semiconducting
no matter what the dc flux φ is. Second, the shapes and
magnitudes of the energy gap vary periodically with some
modifications compared with the ones without an ac flux.
The maximum and minimum energy gaps are dominated
by the magnitude of the ac flux α1. The period of the en-
ergy gap is φ0, which is the same period as the system for
α1 = 0. Type I and type II TCNs possess quite different
energy gaps. The energy gap can reach a very large value
Eg ∼ 2.8γ0 for α1 > 1.4, which can be seen from Figure 1
by comparing the energy levels.

3 Steady state current

The persistent current is an equilibrium property of a
mesoscopic ring which can be derived from the free energy
of the system. However, time-dependent system disturbed
by an ac flux is in a nonequilibrium state. Since the Flo-
quet state can describe the pseudo-equilibrium state, we
can therefore expand the time-dependent nonequilibrium

state as the combination of pseudo-equilibrium states. Be-
cause the statistical mechanics determines physical behav-
iors by taking a time average and an ensemble average, we
can also obtain the free energy of the system applied with
a time-dependent magnetic flux. The time-averaged TCN
free energy is given by

F (φ, φ1) = −kBT
∑
�jnδ

J2
n(α1)

× ln{1 + exp[−(Ẽln j,nδ(φ, φ1) − EF )/kBT ]}, (6)

where T is the temperature of the system, kB the
Boltzmann constant, and Ẽ�j,nδ = ε�j,δ+n�ω is the energy
level with ε�j,δ defined in equation (3). The free energy is
weighted by J2

n(α1) which declines with increasing n. This
signifies that the probability of the absorbing and emit-
ting of a photon procedure decreases with increasing pho-
ton number. In principle, the system can be assisted with
an infinite number of photons. In practice we only need
to consider a low order of photon-assisted procedure since
the contribution of higher numbers of photons is quite
small. From this free energy, we can derive the steady
state current by taking the derivative over the flux φ,
i.e., I = −∂F (φ, φ1)/∂φ. This current is a time-averaged
one which can be measured experimently. Obviously, as
α1 → 0, the free energy reduces to the one in the absence
of the ac magnetic flux, and the steady state current is
a persistent current. The steady state current is obtained
straightforwardly by taking the partial derivative of the
free energy (6) with respect to φ, which is formulated as

I(φ, φ1) =

I0γ0

∑
�jnδ

Γ�j(φ, φ1)
ε�j,δ(φ, φ1)

J2
n(α1)f [Ẽ�j,nδ(φ, φ1)] sin(β�), (7)

where

Γ�j(φ, φ1) =

J0(α1) cos
(

jπ

m

)
+ 2 cos(β�)

[
1 − 2

∞∑
n=−∞

J2
2n+1(α1)

]
,

and I0 = 4πγ0/pΦ0. In the current formula above, f(ε)
is the Fermi-Dirac distribution function. The magnitude
of the steady current is dependent on the index p, and it
is strongly associated with the magnitude of the ac flux.
The current is inversely proportional to p, which means
that as p → ∞, the current disappears. Since the ac flux
increases the energy gap, one can expect that the steady
current is suppressed extensively by the ac flux.

We display the persistent current of (10, 10;−480, 480)
and (10, 10;−481, 481) TCNs in Figure 3a at zero temper-
ature. The current is scaled by I0 = 3 × 10−6 A for these
systems. The persistent current is carried in the whole π-
band channels and the lowest π∗-band channel although
different channels carry different portions of current. As
a result, some of current parts are cancelled, and the net
current is sensitive to the types of TCN. The current os-
cillates periodically with a period φ0, and it satisfies the
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Fig. 3. The steady current versus dc magnetic flux φ. Diagram
(a) shows the persistent current at α1 = 0. The solid curve
corresponds to the (10, 10;−480, 480) TCN, while the dotted
curve is related to the (10, 10;−481, 481) TCN. Diagrams (b)
and (c) display the steady current of the (10, 10;−480, 480)
TCN and the (10, 10;−481, 481) TCN, respectively, for α1 =
0.05 and �ω/γ0 = 0.01.

symmetric property I(φ + φ0/2) = −I(−φ +φ0/2), which
means that in a period 0 ∼ φ0 the current is an odd func-
tion of φ at φ0/2 [28]. The current is zero if the static flux
φ = 0. In a period φ0 the current of a type I TCN only os-
cillates once, while the current of a type II TCN oscillates
twice. This behavior for different types of TCN is caused
by the situation that the type I TCN possesses one metal-
semiconductor transition, but the type II TCN possesses
two metal-semiconductor transitions in a period. The
type I TCN carries a larger persistent current than that of
the type II TCN. The steady current versus φ in the pres-
ence of an ac flux at α1 = 0.05 is depicted in Figures 3b
and c for (10, 10;−480, 480) and (10, 10;−481, 481) TCNs,
respectively, where �ω = 0.01γ0. The corresponding mag-
nitude of the ac magnetic field required on the ring is
Bm = 1.39 × 103 T, and the frequency is 7.36 × 1012 Hz.
One observes that the current oscillates with φ periodi-
cally with a period φ0. However, in each period, the cur-
rent vibrates fiercely. This behavior is somewhat like the
situation where the persistent current carries high oscil-
lating current. Compared with the persistent current, one
observes that the steady current is strongly suppressed by
the ac flux due to the increasing energy gap. The forma-
tion of a current can be understood as the physical proce-
dure. The application of an ac flux results in the increas-
ing of the energy gap of the system. Due to the symmetric

Fig. 4. The steady current for the (10, 10;−480, 480) TCN
versus the frequency of an ac flux. The parameters are chosen
such that φ = 0, α1 = 0.02, and the frequency is scaled by
γ0/h = 7.36 × 1014 Hz.

structures of TCNs, the Fermi level is located between the
energy bands with EF = 0. At zero temperature, a current
is produced if the condition ε�j,δ(φ, φ1)+n�ω ≤ EF is sat-
isfied. For the π-band, this condition is naturally satisfied
in the absence of an ac flux. In the presence of an ac flux,
the π-band shifts up and down due to absorbing and emit-
ting photons. If the π-band absorbs photons to shift the
energy band up as ε�j,δ(φ, φ1)+n�ω > EF (where n > 0),
then there is no current carried by the π-band. On the
other hand, the π∗-band does not carry current in the ab-
sence of an ac flux except in the lowest energy level. How-
ever, in the presence of an ac flux, this band shifts down by
emitting photons to meet ε�j,δ(φ, φ1) + n�ω ≤ EF (where
n < 0), then this π∗-band can also carry current. The shift
of the energy bands is the ac Stark effect. Therefore, the
ac Stark effect results in the novel conducting properties
in the TCNs. The conducting behavior is strongly associ-
ated with the type of TCN, which can be seen obviously
from Figure 3.

The variation of the steady state current versus the
frequency of the ac flux is presented in Figure 4 at φ = 0,
and α1 = 0.02. The corresponding magnitude of the ac
magnetic field on the ring is Bm = 5.56 × 102 T. The
frequency is scaled by γ0/h = 7.36 × 1014 Hz. As the
frequency lies in the region 0 ∼ 0.22γ0/h, the current is
a constant I = 9.84 × 10−4I0, and as the frequency lies
in the region 0.22 ∼ 0.64γ0/h, the current jumps to an-
other value I = 9.54 × 10−4I0. Then by increasing the
frequency, the current oscillates fiercely to exhibit a sensi-
tivity of current against frequency. The behavior of steady
current versus frequency suggests that we can employ the
TCN to make a switching device which is controlled by
the frequency and magnitude of the ac flux.

4 Local density of states

The LDOS is a quantity that can be measured by scan-
ning tunneling microscopy (STM). Recent STM studies of
SWCNs have confirmed the electronic properties, such as
the Van Hove singularities [29], by measuring the LDOS.
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The LDOS can be defined by the imaginary part of a di-
agonal Green’s function in the local representation. Due
to the symmetric structure of the TCN system, the LDOS
acts as the bulk density of states (DOS) since there is no
edge effect. We perform the calculation of LDOS from the
definition

ρ(ε, φ, φ1) = − 1
π

ImGr(ε, φ, φ1). (8)

The Green’s function Gr(ε, φ, φ1) of the pseudo-
equilibrium system can be obtained by applying the ex-
tended Floquet state to the quantum operator L̂(t) as the
usual definition of Green’s function [25]. For the diagonal
elements of the local Green’s function, we can express it
by the photon-assisted energy shift as

Gr(ε, φ, φ1) =
1
N

∑
�mjsδ

J2
m(α1) | K�j

s−m(φ, φ1) |2
ε − Ẽ�j,sδ(φ, φ1) + iη

, (9)

where K�j
n (φ, φ1) is the Fourier transformed version asso-

ciated with time t through the equation

∑
n

K�j
n (φ, φ1)einωt =

exp
{
− i

�

∫ t

0

dτ [E�j,δ [q(τ)] − ε�j,δ(φ, φ1)]
}

.

N is the number of unit cells in the TCN, and η → +0. For
the (m, m;−p, p) TCN system, the number of unit cells is
equal to the index p, i.e., N = p. By expanding the time-
dependent energy levels near the energy ε�j,δ(φ, φ1), we
can obtain the expression of K�j

n (φ, φ1) approximately by
keeping the leading orders to give

K�j
s (φ, φ1) =

∑
n

Jn(Λ�j)Js−n(ζ�),

where

Λ�j =
4γ0

�ω
J1(α1) cos(β�) cos(jπ/m),

ζ� =
4γ0

�ω
J0(α1)J1(α1) cos(2β�).

The LDOS therefore can be derived by substituting equa-
tion (9) into the definition given in equation (8). The ex-
pression of LDOS is very complicated due to the absorp-
tion and emission of photons, since the photon-assisted
procedure is associated with the magnetic flux compo-
nents φ and φ1. The Green’s function is weighted by
J2

m(α1) and | K�j
s−m(φ, φ1) |2. This signifies that the inten-

sity of absorption and emission of photons is determined
by the magnitudes of φ and φ1. As α1 → 0, we have the
Green’s function of the system in the absence of the ac
magnetic flux component.

We show the LDOS for (10, 10;−480, 480) and
(10, 10;−481, 481) TCNs in the presence of an ac flux in
Figures 5a and b, respectively. The frequency of the ex-
ternal field is in the microwave range at 7.36 × 1012 Hz.

Fig. 5. LDOS of a TCN versus energy in the presence of an
ac magnetic flux. The parameters are chosen such that �ω =
0.01γ0, α1 = 0.05, φ = 0. Diagrams (a) and (b) are associated
with (10, 10;−480, 480) and (10, 10;−481, 481) TCNs, respec-
tively. The parameters are chosen such that �ω = 0.01γ0, α1 =
0.05, φ = 0.

The magnitude of the ac flux is determined by α1 = 0.05,
and the static flux is zero by setting φ = 0. The corre-
sponding magnitude of the ac magnetic field on the ring
is Bm = 1.39×103 T. The type I and type II TCNs exhibit
small energy gaps about Eg ∼ 30 meV. As the external
magnetic flux is removed, the type I (10, 10;−480, 480)
TCN becomes a metal with zero energy gap Eg = 0, while
type II (10, 10;−481, 481) TCN becomes a semiconductor
with the energy gap Eg ≈ 23 meV shown in Figure 2a.
This indicates that the ac flux enhances the energy gap
to cause the metal-semiconductor transition. We also ob-
serve the resonant peaks obviously associated with photon
absorption and emission. In the absence of an ac flux, the
LDOS displays close resonant peaks related to discrete en-
ergy levels. Some of the peaks are suppressed while some
of them are enhanced due to the photon absorption and
emission effect. The compound process yields a novel elec-
tronic structure, and results in quite different conducting
behavior which we have seen in Figure 3. The symmetric
structure of the LDOS around E = 0 indicates that the
topological symmetry of TCNs is not broken by introduc-
ing an ac flux. The LDOSs of type I and type II TCNs
exhibit subtly different structures since the main behavior
of system is dominated by the ac flux. However, this slight
difference of LDOS implies a distinctly different transport
behavior of the two systems, such as the steady current
shown in Figure 3.

5 Concluding remarks

We have investigated the ac Stark effect in TCNs threaded
through an ac magnetic flux. The modification of the en-
ergy levels is strongly dependent on the specific structures
of the samples. For a sample system in the mesoscopic
range, the interference takes effect, and electrons move co-
herently to form a persistent current. In the TCN system,
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coherent behavior of electrons result in novel properties
compared with usual metallic or semiconducting systems
since their energy gaps are adjusted by an external mag-
netic flux. The metal-semiconductor transition induces a
specific conducting current. The ac flux bends the energy
levels up and down, and enhances the energy gap eventu-
ally. This causes the type I metallic TCN to be semicon-
ducting, and the energy gap can be very large by increas-
ing the magnitude of the ac flux. The current is formed
due to two procedures. One is the persistent current as the
static flux φ is applied to the system, and the other part is
caused by the photon absorption and emission procedure.
The compound effect is the composition of two compo-
nents of current to produce an oscillating current which
fluctuates fiercely with φ. The period of the current versus
flux φ is the flux quantum φ0, but the detailed oscillation
structure is dependent on the frequency and structure of
the TCN. The LDOS is given by calculating the imagi-
nary part of the Green’s function in the Floquet state.
In the extended Hilbert space, the whole system is in a
pseudo-equilibrium state. This causes us to employ quan-
tum statistical mechanics to handle the photon-assisted
system conveniently. Photon-resonant peaks are observed
in LDOS due to the suppression and enhancement of some
resonant peaks, which can be measured by STM. Since
there are several external parameters such as static flux,
magnitude and frequency of the ac flux, we can control the
conducting behavior by adjusting the parameters. This
leads us to contrive novel devices to meet different ap-
plication purposes, such as switching and photon-electron
devices. Since the modification of the energy levels has a
major effect on the system, we conclude that the ac Stark
effect plays an important role in the mesoscopic TCN sys-
tem not only in fundamental phenomena, but also in tech-
nical applications.
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gram of the Chinese Government.

References

1. E. Merzbacher, Quantum Mechanics (New York, John
Wiley and Sons, INC., 1961)

2. G.H. Wannier, Phys. Rev. 117, 432 (1960); Rev. Mod.
Phys. 34, 645 (1962)

3. R.W. Koss, L.M. Lambert, Phys. Rev. B 5, 1479 (1972)
4. P. Fulde, A. Ovchinnikov, Eur. Phys. J. B 17, 623 (2000);

S. Pleutin, A. Ovchinnikov, Eur. Phys. J. B 23, 521 (2001);
S. Pleutin, A. Ovchinnikov, Carbon 40, 129 (2002)

5. R.R. Freeman et al., Phys. Rev. Lett. 59, 1092 (1987)
6. R.B. Vrijen, J.H. Hoogenraad, H.G. Muller, L.D.

Noordam, Phys. Rev. Lett. 70, 3016 (1993)
7. J.G. Story, D.I. Duncan, T.F. Gallagher, Phys. Rev. Lett.

70, 3012 (1993)
8. M. Holthaus, D.W. Hone, Phys. Rev. B 49, 16605 (1994)
9. P.S.S. Guimaraes et al., Phys. Rev. Lett. 70, 3792 (1993)

10. H.K. Zhao, Z. Phys. B 102, 415 (1997); H.K. Zhao, G.v.
Gehlen, Phys. Rev. B 58, 13660 (1998); H.K. Zhao, J.
Wang, Eur. Phys. J. B 9, 513 (1999)

11. R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical Prop-
erties of Carbon Nanotubes (Imperial College Press, Lon-
don, 1998)

12. S. Iijima, Nature (London) 354, 56 (1991)
13. S.J. Tans, M.H. Devoret, H. Dai, A. Thess, R.E. Smalley,

L.J. Geerligs, C. Dekker, Nature (London) 386, 474
(1997); C. Zhou, J. Kong, H. Dai, Phys. Rev. Lett. 84,
5604 (2000)

14. T.W. Odom, J.L. Huang, P. Kim, C.M. Lieber, Nature
391, 62 (1998); S.J. Tans, A.R.M. Verschueren, C. Dekker,
Nature 393, 49 (1998)

15. A. Bachtold, C. Strunk, J.P. Salvetat, J.M. Bonard, L.
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